Conformations of 2-Substituted 2,3-Dihydro-1,4-benzodioxines

Andrew A. Freer and George A. Sim
Chemistry Department, University of Glasgow, Glasgow G12 8QQ, UK

Abstract

X-Ray crystallographic studies have shown that the imidazolinium group in 2-(2-methoxy-2,3-dihydro-1,4-benzodioxin-2-yl)-4,5-dihydroimidazolium bromide (4), (+)-2-(2-methoxy-2,3-dihydro-1,4-benzodioxin-2-yl) -4,5-dihydroimidazolium hydrogen dibenzoyltartrate (5), and 2-(2,3-dihydro-1-benzopyran-2-yl)-4,5-dihydroimidazolium chloride (7) occupies the equatorial position on the dihydroxine ring of compounds (4) and (5) and the dihydropyran ring of compound (7). The imidazolium group in 2-(2,3-dihydro-1,4-benzodioxin-2-yl)-4,5-dihydroimidazolium chloride (2), (+)-2-(2,3-dihydro-1,4-benzodioxin-2-yl)-4,5-dihydroimidazolium hydrogen dibenzoyltartrate (3), and 2 -(2-isopropyl-2,3-dihydro-1,4-benzodioxin- 2 -yl)-4,5-dihydroimidazolium chioride (6) occupies the axial position on the dihydrodioxine ring; the axial choice in compound (6) is attributed to the equatorial preference of the bulky isopropyl group, and the conformational anomaly in compounds (2) and (3) appears to be caused by an interaction between the axial imidazolium group and a lone-pair orbital on the oxygen atom $O(4)$ of the dihydrodioxine ring.

Derivatives of 2,3-dihydro-1,4-dioxine incorporating imidazole or dihydroimidazole moieties have been identified as α_{2}-adrenoreceptor antagonists. ${ }^{1-5}$ 1-Ethyl-2-(2,3-dihydro-1,4-benzodioxin-2-ylmethyl)imidazolium chloride (1) ${ }^{6}$ and 2-(2,3-dihydro-1,4-benzodioxin-2-yl)-4,5-dihydroimidazolium chloride (2) ${ }^{7}$ have been examined by X-ray crystallography and the results reveal that the dihydrodioxine rings adopt distorted halfchair conformations with the substituent of $\mathrm{C}(2)$ equatorial, as expected, in compound (1) but axial in compound (2). It is unclear whether this conformational difference is a feature of isolated molecules or is to be attributed to crystal-packing forces, and we undertook X-ray studies of the related compounds (3)-(7) to investigate the conformational features of this series. Pharmacological evaluation of 2-(2-methoxy-2,3-dihydro-1,4-benzodioxin-2-yl)-4,5-dihydroimidazole indicated that the biological activity is confined to the (+)-enantiomer, ${ }^{4,5}$ and the X-ray analyses of compounds (4) and (5) served also to establish the absolute configuration of the $(+)$-enantiomer as S.

The molecular structures of compounds (3)-(7), derived from the X-ray studies, are shown in Fig. 1 and the torsion angles that define the dihydrodioxine conformations are listed in Table 1.

In compounds (4) and (5) the imidazolinium group is equatorial and the methoxy group axial in regard to the dihydrodioxine ring; here the normal steric preference of the imidazolinium group for the equatorial orientation is reinforced by the anomeric axial preference of the methoxy group. ${ }^{8.9}$ In compounds (3) and (6), on the other hand, the imidazolinium group is in the axial orientation on the dihydrodioxine ring. The axial position of the imidazolinium group in compound (6) can be attributed to the equatorial preference of the bulky isopropyl group but compounds (2) and (3) are clearly deviant.

It is unlikely that the conformational anomaly in compounds (2) and (3) arises from an interaction between the positively charged dihydroimidazolium group and the adjacent dihydrodioxine oxygen atom $O(1)$, since protonation of the imidazole ring in N-glycosylimidazoles changes the preferred orientation from axial to equatorial. ${ }^{10}$ The trimethylammonium group at $\mathrm{C}(5)$ in 5-trimethylamino-1,3-dioxane has an axial preference ${ }^{11}$ and this suggests that the axial orientation of the imidazolinium group in compounds (2) and (3) involves an interaction between the imidazolinium group and the dihydrodioxine oxygen atom $O(4)$. Compound (7) has the
(2) $\mathrm{R}=\mathrm{H}, \mathrm{X}=\mathrm{Cl}$

(4) $\mathrm{R}=\mathrm{OMe}, \mathrm{X}=\mathrm{Br}$
(5) $\mathrm{R}=\mathrm{OMe}, \mathrm{X}=\mathrm{PhCO}_{2} \mathrm{CHCO}_{2}^{-}$
(6) $\mathrm{R}=\mathrm{CHMe}_{2}, \mathrm{X}=\mathrm{Cl}$

Cl^{-}
(7)
oxygen atom $\mathrm{O}(4)$ replaced by a CH_{2} group and here the imidazolinium group is found to adopt the equatorial orientation. We conclude that a charge-dipole interaction between the imidazolinium group and a lone-pair orbital at $O(4)$ is responsible for the axial preference of the imidazolinium group in compounds (2) and (3). The interaction is outweighed by the anomeric effect in compounds (4) and (5) but will also feature in compound (6).

The dihydrodioxine rings in compounds (3)-(6) and the

(5)

Figure 1. Atomic arrangements in the dihydrobenzodioxinylimidazolinium cations of compounds (3)-(7). The thermal ellipsoids are drawn at the 50% probability level. The \mathbf{H}-atoms are represented by spheres of radius $0.1 \AA$.

Figure 2. Atomic arrangement in the hydrogen (+)-dibenzoyltartrate anion of compound (5).

Table 1. Torsion angles $/{ }^{\circ}$ in compounds (2)-(7). Standard deviations are $0.2-0.9^{\circ}$.

	(2)	(3)	(4)	(5)	(6)	(7)
$10-9-1-2$	-5.3	-2.8	11.2	25.5	-5.6	17.6
$9-1-2-3$	34.2	32.6	-39.6	-53.9	35.6	-47.1
$1-2-3-4$	-59.1	-59.2	59.9	61.4	-61.0	60.7
$2-3-4-10$	52.7	54.6	-48.5	-38.4	54.1	-44.0
$3-4-10-9$	-24.7	-25.4	20.3	8.5	-23.6	17.1
$4-10-9-1$	-0.7	-2.0	-0.1	-0.7	-2.0	-2.4
$9-1-2-11$	-90.0	-91.3	-159.5	-171.1	-84.1	-169.0

dihydropyran ring in compound (7) have distorted half-chair conformations (Table 1). The $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsion angle, $59.1-$ 61.4 , mean 60.1°, does not vary much in the series. NMR investigations of 2,3-dihydro-1,4-dioxine ${ }^{12,13}$ and 2,3-dihydro-1,4-benzodioxine ${ }^{13}$ have established that these molecules have half-chair conformations with $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ torsion angles $60-$ 61°. In compounds (4) and (5), the $\mathrm{C}(2)-\mathrm{O}(1)$ distance is $1.420(5), 1.440(4) \AA$ and the $\mathrm{C}(2)-\mathrm{O}(16)$ distance is $1.400(6)$, $1.379(5) \AA$; the shorter axial $\mathrm{C}-\mathrm{O}$ bond is a regular feature of pyranose acetals. ${ }^{14,15}$

The imidazolinium rings show small departure from planarity, with $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angles in the range $0.2-15.2^{\circ}$. The $\mathrm{C}(11)-\mathrm{N}(12)$ and $\mathrm{C}(11)-\mathrm{N}(15)$ bond lengths range over $1.287(6)-1.338(13) \AA$. with a mean of $1.307 \AA$. Similar results, 1.304-1.310(5), mean $1.308 \AA$, have been reported for 2-(1naphthylmethyl)dihydroimidazolium chloride ${ }^{16}$ and $2-(4-\mathrm{t}-$ butyl-2,6-dimethylbenzyl)dihydroimidazolinium chloride. ${ }^{17}$ The virtual identity of the two $\mathrm{C}(11)-\mathrm{N}$ distances indicates that the positive charge is delocalized over both N atoms.

Experimental

Crystal Data--(+)-2,3-Dihydro-1,4-benzodioxin-2-yl)-4,5dihydroimidazolium hydrogen dibenzoyltartrate (3),

Table 2. Fractional atomic co-ordinates for compound (3), with standard deviations in parentheses.

Atom	x	y	z
O(1)	0.9953 (10)	0.047 1(8)	$0.1002(2)$
$\mathrm{O}(4)$	$0.6267(10)$	$0.0429(8)$	0.103 5(2)
N(12)	0.856 8(12)	$0.0855(8)$	0.1841 (2)
N(15)	$0.8923(12)$	0.13168 (8)	0.165 4(2)
C(2)	0.935 9(16)	-0.062 2(10)	0.122 8(3)
C(3)	0.773 1(17)	-0.138 8(11)	0.1085 (3)
C(5)	$0.5451(19)$	$0.1418(13)$	0.0647 (3)
C(6)	0.598(2)	0.253(1)	0.044(0)
C(7)	0.778(2)	0.292(1)	0.042(0)
C(8)	$0.9027(18)$	0.222 1(12)	0.060 2(3)
C(9)	0.855 5(15)	0.112 8(10)	0.0813 (3)
C(10)	0.674 3(16)	0.069 1(11)	0.083 5(3)
C(11)	0.896 4(15)	$-0.0020(11)$	0.157 3(3)
C(13)	0.826 3(16)	$0.0003(11)$	0.2151 (3)
C(14)	0.8587 (16)	$0.1507(11)$	0.202 3(3)
$\mathrm{O}(1 \mathrm{~A})$	1.238 6(10)	0.698 8(6)	0.166 8(2)
$\mathrm{O}(2 \mathrm{~A})$	1.241 6(14)	0.666 5(8)	0.223 3(2)
$\mathrm{O}(3 \mathrm{~A})$	0.913 6(10)	0.4223 (7)	0.153 4(2)
$\mathrm{O}(4 \mathrm{~A})$	0.880 4(11)	$0.6369(7)$	0.173 6(2)
$\mathrm{O}(5 \mathrm{~A})$	1.189 9(9)	0.6009 (7)	0.1005 (2)
O(6A)	$1.2415(12)$	0.4304 (7)	0.062 0(2)
O(7A)	$1.5585(11)$	0.5833 (8)	0.104 9(2)
O(8A)	$1.5460(9)$	0.434 3(8)	0.1501 (2)
C(1A)	1.1841 (14)	0.554 1(10)	0.1610 (2)
C(2A)	1.2591 (16)	0.743 2(10)	0.199 3(3)
C(3A)	$1.3082(15)$	0.893 6(11)	0.201 2(3)
C(4A)	1.298 9(17)	0.957 5(12)	0.233 8(3)
C(5A)	$1.3314(18)$	$1.1017(13)$	0.236 8(3)
C(6A)	1.375 7(19)	$1.1783(12)$	0.2081 (3)
C(7A)	1.390 9(18)	$1.1175(11)$	$0.1765(3)$
C(8A)	$1.3567(17)$	0.972 1(11)	0.172 3(3)
C(9A)	1.259 2(17)	$0.5097(11)$	0.126 9(3)
C(10A)	1.475 3(17)	0.513 5(12)	$0.1257(3)$
C(11A)	$1.2017(15)$	0.553 8(11)	0.068 2(2)
C(12A)	0.969 8(15)	0.537 4(10)	0.162 5(3)
C(13A)	$1.1640(16)$	0.658 2(11)	$0.0417(3)$
C(14A)	1.165 6(17)	0.799 5(11)	0.048 4(3)
C(15A)	$1.1363(18)$	0.896 3(11)	0.022 4(3)
C(16A)	1.1080 (19)	0.848 8(12)	-0.010 8(3)
C(17A)	$1.1018(19)$	$0.7095(12)$	-0.017 4(3)
C(18A)	$1.1313(18)$	$0.6115(12)$	0.007 3(3)

Table 3. Fractional atomic co-ordinates for compound (4), with standard deviations in parentheses.

Atom	x	y	z
Br	$0.21723(7)$	$0.15347(5)$	$0.78407(2)$
$\mathrm{O}(1)$	$0.8105(5)$	$0.0194(3)$	$0.6408(1)$
$\mathrm{O}(4)$	$0.9887(5)$	$0.2775(4)$	$0.5856(2)$
$\mathrm{O}(16)$	$0.6328(5)$	$0.2439(4)$	$0.6284(2)$
$\mathrm{N}(12)$	$0.7122(8)$	$0.2856(5)$	$0.7611(2)$
$\mathrm{N}(15)$	$0.7298(8)$	$0.0335(5)$	$0.7581(2)$
$\mathrm{C}(2)$	$0.7793(7)$	$0.1757(4)$	$0.6595(2)$
$\mathrm{C}(3)$	$0.9443(7)$	$0.2763(6)$	$0.6481(2)$
$\mathrm{C}(5)$	$1.0869(9)$	$0.1111(8)$	$0.5060(3)$
$\mathrm{C}(6)$	$1.0954(11)$	$-0.0326(10)$	$0.4793(3)$
$\mathrm{C}(7)$	$1.0103(11)$	$-0.1585(9)$	$0.5068(3)$
$\mathrm{C}(8)$	$0.9177(9)$	$-0.1395(7)$	$0.5611(3)$
$\mathrm{C}(9)$	$0.9075(7)$	$0.0057(5)$	$0.5871(2)$
$\mathrm{C}(10)$	$0.9944(7)$	$0.1310(6)$	$0.5601(2)$
$\mathrm{C}(11)$	$0.7381(5)$	$0.1640(5)$	$0.7278(2)$
$\mathrm{C}(13)$	$0.6835(10)$	$0.2431(7)$	$0.8251(3)$
$\mathrm{C}(14)$	$0.6956(12)$	$0.0647(6)$	$0.8230(2)$
$\mathrm{C}(17)$	$0.4665(9)$	$0.1568(11)$	$0.6258(3)$

Table 4. Fractional atomic co-ordinates for compound (5), with standard deviations in parentheses.

Atom	x	y	$=$
$\mathrm{O}(1)$	$-0.7727(3)$	0.0069	-0.204 2(2)
O(4)	-0.416 3(3)	0.0409 9(2)	-0.222 8(2)
$\mathrm{O}(16)$	-0.585 9(3)	-0.107 8(2)	-0.207 4(2)
$\mathrm{O}(100)$	-0.957 7(5)	$-0.3683(2)$	-0.6089(3)
$\mathrm{O}(1 \mathrm{~A})$	$-0.3308(3)$	-0.457 3(2)	-0.318 5(2)
O(2A)	$-0.3023(5)$	-0.5479(2)	-0.441 5(2)
O(3A)	0.027 0(4)	$-0.3347(2)$	$-0.3660(3)$
$\mathrm{O}(4 \mathrm{~A})$	$0.0417(4)$	-0.444 9(2)	-0.264 0(3)
O(5A)	$-0.2606(3)$	-0.286 7(2)	-0.251 6(2)
O(6A)	-0.264 4(4)	-0.158 3(2)	-0.312 1(2)
O(7A)	-0.629 1(3)	$-0.3000(2)$	-0.324 9(2)
O(8A)	-0.616 8(4)	$-0.3456(3)$	-0.485 1(2)
N(12)	$-0.8447(5)$	-0.149 1(2)	$-0.4005(3)$
N(15)	-0.982 2(4)	$-0.0310(2)$	-0.413 2(2)
C(2)	-0.688 8(4)	-0.045 3(2)	-0.266 9(3)
C(3)	-0.557 8(5)	0.007 1(3)	-0.309 9(3)
C(5)	-0.343 2(7)	0.1057 (3)	-0.052 2(4)
C(6)	-0.389 7(8)	0.1307 (3)	0.038 2(4)
C(7)	-0.565 3(9)	0.1180 (3)	$0.0457(4)$
C(8)	-0.6923(7)	0.075 6(3)	$-0.0350(3)$
C(9)	-0.645 9(5)	0.048 6(2)	-0.125 2(3)
C(10)	$-0.4704(5)$	$0.0655(2)$	$-0.1355(3)$
C(11)	-0.843 6(5)	$-0.0760(2)$	-0.360 5(3)
C(13)	-1.001 9(7)	-0.158 4(3)	-0.4973(4)
C(14)	$-1.1027(6)$	-0.077 8(3)	-0.501 7(4)
C(17)	$-0.6700(7)$	-0.1539(3)	-0.140 0(4)
C(100)	-0.941 4(8)	-0.338 2(4)	-0.705 9(4)
C(1A)	-0.253 6(4)	-0.396 3(2)	-0.373 1(3)
C(2A)	-0.352 7(4)	-0.5309(2)	-0.362 8(3)
C(3A)	-0.444 1(5)	-0.589 3(2)	-0.307 1(3)
C(4A)	-0.516 3(6)	-0.564 4(3)	-0.224 9(3)
C(5A)	-0.598 4(8)	-0.622 0(4)	-0.173 5(4)
C(6A)	-0.603 1(7)	-0.7029(4)	-0.205 2(5)
C(7A)	-0.536 3(7)	-0.726 4(3)	-0.286 2(5)
C (8A)	-0.454 3(6)	-0.670 4(3)	-0.338 3(4)
C(9A)	-0.337 3(4)	-0.314 4(2)	-0.3603(3)
C(10A)	-0.548 0(4)	-0.319 8(2)	-0.392 9(3)
C(11A)	-0.228 4(4)	-0.206 3(2)	-0.238 5(3)
C(12A)	$-0.0420(5)$	-0.396 0(2)	-0.325 1(3)
C(13A)	-0.138 5(4)	-0.184 7(3)	-0.123 3(3)
C(14A)	$-0.1365(5)$	-0.1037(3)	-0.093 0(4)
C(15A)	-0.053 1(6)	-0.183 1(3)	0.015 4(4)
C(16A)	$0.0309(6)$	-0.139 1(4)	0.0880 (4)
C(17A)	0.0353 3(7)	-0.218 2(4)	0.056 3(4)
C(18A)	-0.053 8(5)	-0.242 2(3)	-0.0488(3)

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{8}, \quad M=562.58$, orthorhombic, $a=$ 7.287(2), $b=9.506(1), c=38.723(4) \AA, V=2682 \AA^{3}, D_{c}=$ $1.39 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4, F(000)=1176, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=9.1 \mathrm{~cm}^{-1}$, space group $P 2_{1} 2_{1} 2_{1}$.
2-(2-Methoxy-2,3-dihydro-1,4-benzodioxin-2-yl)-4,5-di-
hydroimidazolium bromide (4), $\mathrm{C}_{12} \mathrm{BrH}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}, M=315.21$, orthorhombic, $a=7.343(2), b=8.576(2), c=21.894(3) \AA$, $V=1379 \AA^{3}, D_{\mathrm{c}}=1.52 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4, F(000)=640$, $\mu(\mathrm{Mo}-\mathrm{K} \alpha)=31.6 \mathrm{~cm}^{-1}$, space group $P 2_{1} 2_{1} 2_{1}$.
(+)-2-(2-Methoxy-2,3-dihydro-1,4-benzodioxin-2-yl)-4,5dihydroimidazolium hydrogen dibenzoyltartrate methanol solvate (5), $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{8} \cdot \mathrm{MeOH}, \quad M=624.66$, monoclinic, $a=7.547(2), b=16.385(2), c=12.863(2) \AA, \beta=$ 106.44(2) ${ }^{\circ}, V=1526 \AA^{3}, D_{\mathrm{c}}=1.36 \mathrm{~g} \mathrm{~cm}^{-3}, Z=2, F(000)=$ $656, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=1.14 \mathrm{~cm}^{-1}$, space group $P 2_{1}$.

2(2-Isopropyl-2,3-dihydro-1,4-benzodioxin-2-yl)-4,5-di-
hydroimidazolium chloride (6), $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{2}, M=282.80$, monoclinic, $a=13.894(2), b=8.050(1), c=14.514(2) \AA, \beta=$ $115.63(2)^{\circ}, V=1464 \AA^{3}, D_{\mathrm{c}}=1.28 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4, F(000)=$ $600, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=23.1 \mathrm{~cm}^{-1}$, space group $P 2_{1} / n$.

2-(2,3-Dihydro-1-benzopyran-2-yl)-4,5-dihydroimidazolium

Table 5. Fractional atomic co-ordinates for compound (6), with standard deviations in parentheses.

Atom	x	y	z
$\mathrm{Cl}(1)$	$-0.26755(10)$	$-0.08526(10)$	$-0.39825(8)$
$\mathrm{O}(1)$	$-0.19450(17)$	$0.54450(24)$	$-0.49571(17)$
$\mathrm{O}(4)$	$-0.3588(2)$	$0.3419(3)$	$-0.6393(2)$
$\mathrm{N}(12)$	$-0.3457(3)$	$0.2770(4)$	$-0.4044(2)$
$\mathrm{N}(15)$	$-0.3359(2)$	$0.5450(3)$	$-0.4118(2)$
$\mathrm{C}(2)$	$-0.2186(3)$	$0.3828(3)$	$-0.4686(2)$
$\mathrm{C}(3)$	$-0.2625(3)$	$0.2724(4)$	$-0.5630(3)$
$\mathrm{C}(5)$	$-0.4143(4)$	$0.5708(5)$	$-0.7539(3)$
$\mathrm{C}(6)$	$-0.4007(4)$	$0.7321(6)$	$-0.7777(3)$
$\mathrm{C}(7)$	$-0.3186(4)$	$0.8258(6)$	$-0.7105(3)$
$\mathrm{C}(8)$	$-0.2488(3)$	$0.7635(4)$	$-0.6164(3)$
$\mathrm{C}(9)$	$-0.2630(3)$	$0.6010(4)$	$-0.5914(2)$
$\mathrm{C}(10)$	$-0.3446(3)$	$0.5041(4)$	$-0.6617(3)$
$\mathrm{C}(11)$	$-0.3008(3)$	$0.4021(4)$	$-0.4281(2)$
$\mathrm{C}(13)$	$-0.4202(3)$	$0.3331(5)$	$-0.3644(3)$
$\mathrm{C}(14)$	$-0.4077(3)$	$0.5216(4)$	$-0.3640(3)$
$\mathrm{C}(16)$	$-0.1140(3)$	$0.3170(4)$	$-0.3825(3)$
$\mathrm{C}(17)$	$-0.0807(3)$	$0.4177(5)$	$-0.2852(3)$
$\mathrm{C}(18)$	$-0.0232(4)$	$0.3084(7)$	$-0.4145(4)$

Table 6. Fractional atomic co-ordinates for compound (7), with standard deviations in parentheses.

Atom	x	y	z
Cl	$0.39726(10)$	$0.32943(8)$	$0.13547(6)$
$\mathrm{O}(1)$	$0.6505(2)$	$0.0102(2)$	$0.3167(1)$
$\mathrm{N}(1)$	$0.3348(3)$	$-0.0751(3)$	$0.0815(2)$
$\mathrm{N}(2)$	$0.2818(3)$	$-0.3591(3)$	$0.0383(2)$
$\mathrm{C}(2)$	$0.5275(3)$	$-0.1847(3)$	$0.2671(2)$
$\mathrm{C}(3)$	$0.4236(3)$	$-0.2791(3)$	$0.3599(2)$
$\mathrm{C}(4)$	$0.5803(4)$	$-0.2518(3)$	$0.5003(2)$
$\mathrm{C}(5)$	$0.8777(4)$	$0.0159(3)$	$0.6824(2)$
$\mathrm{C}(6)$	$1.0323(4)$	$0.1948(4)$	$0.7242(2)$
$\mathrm{C}(7)$	$1.0586(4)$	$0.3095(3)$	$0.6301(3)$
$\mathrm{C}(8)$	$0.9291(4)$	$0.2434(3)$	$0.4942(2)$
$\mathrm{C}(9)$	$0.7750(3)$	$0.0633(3)$	$0.4532(2)$
$\mathrm{C}(10)$	$0.7465(3)$	$-0.0547(3)$	$0.5461(2)$
$\mathrm{C}(11)$	$0.3809(3)$	$-0.2047(3)$	$0.1277(2)$
$\mathrm{C}(12)$	$0.1739(4)$	$-0.1475(4)$	$-0.0538(2)$
$\mathrm{C}(13)$	$0.1662(4)$	$-0.3331(4)$	$-0.0930(2)$

chloride (7), $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}, \quad M=238.74$, triclinic, $a=$ 8.100(1), $b=8.132(1), c=10.674(1) \AA, \alpha=90.34(1), \beta=$ $110.70(1), \gamma=115.73(1)^{\circ}, V=582 \AA^{3}, D_{\mathrm{c}}=1.36 \mathrm{~g} \mathrm{~cm}^{-3}, Z=$ $2, F(000)=252, \mu(\mathrm{Cu}-\mathrm{K} \alpha)=27.4 \mathrm{~cm}^{-1}$, space group $P \overline{1}$.

Crystallographic Measurements.-Cell dimensions for each compound were derived from least-squares analyses of the setting angles of 25 reflections measured on an Enraf-Nonius CAD4 diffractometer. Subsequently, for compound (3), 2650 reflections were surveyed in the range $\theta<70^{\circ}(\mathrm{Cu}-\mathrm{K} \alpha)$ and 1334 independent intensities satisfied the criterion $I>3 \sigma(I)$. For compound (4), 1773 reflections were surveyed in the range $\theta<28^{\circ}(\mathrm{Mo}-\mathrm{K} \alpha)$ and 1364 independent intensities satisfied the criterion $I>2.5 \sigma(I)$. For compound (5), 3115 reflections were surveyed in the range $\theta<26^{\circ}$ (Mo-K α) and 2411 independent intensities satisfied the criterion $I>2.5 \sigma(\mathrm{I})$. For compound (6), 3111 reflections were surveyed in the range $\theta<70^{\circ}(\mathrm{Cu}-\mathrm{K} \alpha)$ and 2076 independent intensities satisfied the criterion $I>$

[^0]$3 \sigma(I)$. For compound (7), 2567 reflections were surveyed in the range $\theta<75^{\circ}(\mathrm{Cu}-\mathrm{K} \alpha)$ and 1917 independent intensities satisfied the criterion $I>3 \sigma(I)$.

Structure Analysis.-The crystal structures were elucidated by the heavy-atom approach [compound (4)] and direct phasing [compounds (3), (5), (6) and (7)]. After preliminary least-squares adjustment, H -atoms were located in difference electron-density distributions. In subsequent least-squares calculations C -, N -, $\mathrm{O}-, \mathrm{Cl}$ - and Br -atoms were generally assigned anisotropic thermal parameters and H -atoms isotropic parameters; in the calculations for compound (3), however, because of the paucity of intensity data isotropic thermal parameters were retained for all the C -atoms, and the H -atoms were kept in calculated positions with $U=0.05 \AA^{2}$. The weighting scheme used in all cases was $w=1 / \sigma^{2}\left(\left|F_{\mathrm{o}}\right|\right)$. The absolute stereochemistry was established for compounds (4) and (5). Anomalous-dispersion corrections for the Br^{-}ion of compound (4) were included in the least-squares refinement which converged at $R=0.030, R_{w}=0.035$ for the absolute stereochemistry (S) shown in formula (4) and Fig. 1, and at $R=0.052, R_{w}=0.067$ for the mirror image. An alternative test for compound (4) was provided by adjustment of Rogers' η parameter; ${ }^{18}$ at convergence of the least-squares calculations, η was unambiguously positive, $0.997(31)$, with $R=0.030, R_{w}=$ 0.035 , confirming the absolute stereochemistry shown in structure (4) (Fig. 1). For compound (5), the hydrogen (+)dibenzoyltartrate anion was assigned the known absolute stereochemistry and this gave the dihydrodioxine cation the absolute stereochemistry shown in structure (5) in Fig. 1; the results are in full accord with these for compound (4). The various least-squares calculations converged at $R=0.076$, $R_{w}=0.087$ for compound (3), $R=0.030, R_{w}=0.035$ for compound (4), $R=0.043, R_{w}=0.050$ for compound (5), $R=$ $0.063, R_{w}=0.087$ for compound (6), and $R=0.051, R_{w}=$ 0.065 for compound (7).

The direct phasing procedure was MITHRIL. ${ }^{19}$ Fourier, least-squares, geometry, and ORTEP calculations were performed with the GX system of programs. ${ }^{20}$ Atomic co-ordinates are listed in Tables 2-6. The hydrogen (+)-dibenzoyltartrate anion of compound (5) is shown in Fig. 2.*

Acknowledgements

We thank Dr. C. B. Chapleo of Reckitt and Colman PLC for samples of the compounds and correspondence about the results.

References

1 A. D. Michel and R. L. Whiting, Br. J. Pharmacol., 1981, 74, 225.
2 C. B. Chapleo, P. L. Myers, R. C. M. Butler, J. C. Doxey, A. G. Roach, and C. F. C. Smith, J. Med. Chem., 1983, 26, 823.
3 C. B. Chapleo, P. L. Myers, R. C. M. Butler, J. A. Davis, J. C. Doxey, S. D. Higgins, M. Myers, A. G. Roach, C. F. C. Smith, M. R. Stillings, and A. P. Welbourn, J. Med. Chem., 1984, 27, 570.
4 M. R. Stillings, C. B. Chapleo, R. C. M. Butler, J. A. Davis, C. D. England, M. Myers, P. L. Myers, N. Tweddle, A. P. Welbourn, J. C. Doxey, and C. F. C. Smith, J. Med. Chem., 1985, 28, 1054.
5 A. P. Welbourn, C. B. Chapleo, A. C. Lane, P. L. Myers, A. G. Roach, C. F. C. Smith, M. R. Stillings, and I. F. Tulloch, J. Med. Chem., 1986, 29, 2000.
6 A. Carpy, M. Montagut, and J.-M. Léger, Acta Crystallogr., Sect. C, 1984, 40, 1267.
7 C. Cattier-Humblet and A. Carpy, Eur. J. Med. Chem.-Chim. Ther., 1985, 20, 251.
8 C. Romers, C. Altona, H. R. Buys, and E. Havinga, Top. Stereochem., 1969, 4, 39.
9 N. S. Zefirov, M. A. Fedorovskaya, and T. P. Godunova, Zh. Org. Khim., 1974, 10, 626.

10 R. U. Lemieux, Pure Appl. Chem., 1971, 25, 527.
11 R. Van Cauwenberghe, M. Anteunis, and L. Valckx, Bull. Soc. Chim. Belg., 1974, 83, 285.
12 R. H. Larkin and R. C. Lord, J. Am. Chem. Soc., 1973, 95, 5129.
13 D. M. Fatheree, G. L. Deeg, D. B. Mathews, and J. G. Russell, Org. Magn. Reson., 1982, 18, 92.
14 G. A. Jeffrey, R. K. McMullan, and S. Takagi, Acta Crystallogr., Sect. B, 1977, 33, 728.
15 A. J. Briggs, R. Glenn, P. G. Jones, A. J. Kirby, and P. Ramaswamy, J. Am. Chem. Soc., 1984, 106, 6200.

16 A. Podder, B. P. Mukhopadhyay, J. K. Dattagupta, and N. N. Saha, Acta Crystallogr., Sect. C, 1983, 39, 495.

17 S. Ghose and J. K. Dattagupta, Acta Crystallogr., Sect. C, 1986, 42, 1524.

18 D. Rogers, Acta Crystallogr., Sect. A, 1981, 37, 734.
19 C. J. Gilmore, J. Appl. Crystallogr., 1983, 17, 42.
20 P. R. Mallinson and K. W. Muir, J. Appl. Crystallogr., 1985, 18, 51.

[^0]: * Supplementary data [see section 5.6 .3 of Instructions for Authors (1990), January issue]. Tables of thermal parameters and molecular geometries have been deposited with the Cambridge Crystallographic Data Centre.

